PROMATECT®-L500
Self-supporting Ducts
Self-supporting Ducts Systems Index

<table>
<thead>
<tr>
<th>Type of self-supporting ducts</th>
<th>System code</th>
<th>FRL</th>
<th>Board thickness</th>
<th>Duct type</th>
<th>Mineral wool</th>
<th>Maximum dimension</th>
<th>Tests and assessments standards/labs</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PE 43.30</td>
<td>30/30/30</td>
<td>25mm, 40mm</td>
<td>A, B</td>
<td>Not required</td>
<td>3000mm x 1250mm</td>
<td>BS476: Part 24 and AS1530: Part 4 Report no.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>PE 43.60</td>
<td>60/60/60</td>
<td>25mm, 35mm, 40mm</td>
<td>A, B</td>
<td>Not required</td>
<td>3000mm x 1250mm</td>
<td>BRE CC83903, BRE CC84890/89225J, BRE CC86825, WFRC C80557</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE 43.90</td>
<td>90/90/90</td>
<td>25mm, 40mm</td>
<td>A, B</td>
<td>Not required</td>
<td>3000mm x 1250mm</td>
<td>BRE CC83903, BRE CC84890/89225J, BRE CC86825, WFRC C80557</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE 43.12</td>
<td>120/120/120</td>
<td>25mm, 40mm</td>
<td>A</td>
<td>Not required</td>
<td>3000mm x 1250mm</td>
<td>BRE CC83903, BRE CC84890/89225J, BRE CC86825, WFRC C80557</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PE 43.24</td>
<td>240/240/30</td>
<td>25mm, 40mm</td>
<td>B</td>
<td>Not required</td>
<td>3000mm x 1250mm</td>
<td>BRE CC83903, BRE CC84890/89225J, BRE CC86825, WFRC C80557</td>
<td></td>
</tr>
</tbody>
</table>

*For Duct type B only.

NOTE: For ducts exposed to external fire (Duct type A) the insulation can be measured inside the duct, inside the fire compartment or outside the duct on an adjacent compartment. All the above provide similar levels of insulation to that listed, when the insulation is measured outside the duct. For details of insulated ducts exposed to external fire where insulation is required inside the duct, or inside the fire compartment, please consult Promat Technical Department.
The relative complexity of any ductwork system which is passing through different fire compartments and the relevance of the system’s function in ambient as well as fire conditions can make the selection of a suitable ductwork system difficult.

This section of the handbook aims to give some guidance on the fire performance requirements of ductwork and offers a wide range of solutions for the protection of steel ductwork and for self-supporting systems using PROMATECT®-H, and PROMATECT®-L500.

For particularly onerous conditions, e.g. where high impact strength is required or for use in aggressive environments, Promat have developed a range of systems using the PROMATECT®-S high impact board.

Fire Testing Methods

To determine the fire resistance of ducts (without the aid of fire dampers) passing through or between compartments, the system should normally be tested or assessed in accordance with BS476: Part 24 or AS1530: Part 4. These standards have been written specifically for ventilation ducts, but guidance is also given in these standards on the performance requirements for “smoke outlet” ducts and “kitchen extract” ducts.

Although the following information refers to BS476: Parts 20 to 24, these details apply equally to AS1530: Part 4 in terms of the performance requirements. It should be noted, however, that there are substantial differences between the two standards in terms of testing methodology which greatly affect the results. It is not possible to simply transfer results from AS1530: Part 4 test to BS476: Part 24 due to this huge difference in testing methods.

A part of a standard fire test, duct systems are exposed to external fire (also known as Duct type A) and one sample to both external AND internal fire (also known as Duct type B). Fans create a standard pressure difference and air flow and the ducts fire performance is assessed in both fan-on and fan-off situations. When testing horizontal ducts, a run of at least 3000mm is located within the fire compartment (the EN and revised ISO standards required a 4000mm length exposed) and a further 2500mm outside the fire compartment.

BS476: Part 24 expresses the fire resistance of ducts without the aid of dampers, in terms of stability, integrity and insulation.

Stability failure occurs when the suspension or fixing devices can no longer retain a duct in its intended position or when sections of the duct collapse. This requirement does not apply to the length of the duct exposed to internal fire (Duct type B) within the fire compartment.

It should be noted that if a duct suffers extensive deformation, such that it can no longer fulfil its intended purpose, this would be classed as stability failure. For Duct type A, loss of pressure within the duct during testing is also construed as stability failure.

Integrity failure occurs when cracks, holes or openings occur in the duct or at any penetrations within walls or floors, through which flames or hot gases can pass. The effects on integrity of the movement and distortion of both restrained and unrestrained ducts are also included in the standard.

Insulation failure occurs when the temperature rise on the outer surface of the duct outside the fire compartment exceeds 140°C (mean) or 180°C (maximum). The guidance in the standard also states that ducts lined with combustible materials or coated internally with fats or greases, e.g. kitchen extract, should also have this criterion for the inner surface of the duct within the fire compartment when the duct is exposed to external fire (Duct A).

For smoke extraction, the guidance in the standard states that the cross sectional area of a duct required to extract smoke in the event of a fire should not be reduced by more than 25% for the duration of the fire exposure.

See Penetration Through Walls & Floors on opposite page.

General Design Considerations

The following points are some of the factors which should be considered when determining the correct specification to ensure a ductwork system will provide the required fire performance. Further advice can of course be obtained from the Promat Technical Department.

1. **Required Fire Exposure**

Ductwork systems which are located in more than one compartment should always be tested or assessed for their performance when exposed to the heating conditions described within BS476: Part 20. Reduced heating curves are generally only acceptable for certain of the systems components, e.g. the fan.

The performance of a ductwork system will vary depending on whether or not a fire could have direct access to inside the duct through an unprotected opening. If in doubt, one should assume direct access, i.e. the Duct B scenario described previously under Fire Testing Methods.

2. **Required Fire Performance**

It is a general requirement that the ducts must satisfy all the relevant performance criteria of stability, integrity and insulation (and cross sectional area if a smoke extraction duct). However, the approval authority may accept relaxations on occasion. For example, if no combustible materials or personnel could be in contact with the duct, the authority may accept a reduced insulation performance.
General Design Considerations

3. Supporting Structure
Care should be taken that any structural element from which the duct system is supported, e.g. a beam, floor or wall, must have as a minimum the same fire resistance as the duct system itself and must be able to support the load of the duct under fire conditions.

4. Hanger Support
The supporting hangers, supports and their fixings should be capable of bearing the load of the complete ductwork system including any applied insulation material or other services suspended from it. Chemical anchors are generally not considered suitable. It is normally not advisable to use unprotected supports if the stress exceeds the values given on page 5 and/or if hanger lengths exceed 2000mm. The hanger centres should not exceed the limits given in page 5.

5. Steel Ductwork
The steel duct must be constructed in accordance with the requirements of DW/144 – Specification for sheet metal ductwork – low, medium and high pressure/velocity air systems (published by the Heating and Ventilating Contractors’ Association UK.), or equivalent specification, e.g. SMACNA. The steel ducts must be constructed with rolled steel angle-flanged cross joints. It is recommend that longitudinal seams be formed using the Pittsburgh lock.

6. Penetrations Through Walls & Floors
Care should be taken to ensure that movement of the duct in ambient or in fire conditions does not adversely affect the performance of the wall, partition or floor, or any penetration seal. It should be understood that where a duct passes through any compartment wall or floor or other type of separating element, the aperture between the element and the duct must be sealed in accordance with the system approved for use with the duct. In general this requires the use of a penetration seal constructed from materials and in such a manner to match the system used in the duct test programme. Penetrations seals are part of the tested duct system and the use of untested third party products are not permitted.

7. Movement Joints
Movement joint details may be required for long lengths of duct, particularly where the duct spans across a movement joint in the floor or wall, or passes through floors and roof that may deflect at different rates. Please consult Promat Technical office for details of such joints.

8. Air Flow & Leakage
The design of some fire resisting duct systems may need modification to meet DW/144 performance standards. All Promat self supporting duct systems will meet the requirements of DW/144 to the highest levels, provided the correct board thickness is employed and all joints are correctly sealed in accordance with the system recommendations.

9. Ductwork Functions
Most ductwork systems can fall into one or more of the following categories:
- Ventilation and air conditioning;
- Natural smoke extract;
- Fan assisted smoke extract;
- Pressurisation of escape routes and fire fighting lobbies.

In the event of a fire, the function of a system can often change. For example, an air conditioning system could switch to become a fan assisted smoke extract duct. It is therefore essential that the performance requirements in both normal conditions and fire conditions are considered.

10. Other Requirements
Acoustic performance, thermal insulation, water tolerance, strength and appearance can also be important considerations (See BS8313: 1989 Code of practice for accommodation of building services in ducts).

Selection of Fire Protection System
Traditionally all ductwork was fabricated from steel which normally had to be encased in a fire protection system when passing through a compartment wall or floor without the aid of a fire damper.

In recent years, self-supporting systems without a steel liner have been introduced to extract smoke in the event of a fire through natural ventilation. Now some self-supporting systems, e.g. PROMATECT®-H, PROMATECT®-L500 and PROMATECT®-S are available which can match the leakage and air flow performance of steel ducts in accordance with the DW144 standard up to Class C.

To satisfy the wide range of requirements in the current market, Promat can offer no less than three products to protect steel ductwork and to fabricate self-supporting systems.

For any size of duct, the tensile stress in the steel hangers must not exceed 10N/mm² for fire resistance up to 120 minutes, or 6N/mm² for fire resistance up to 240 minutes. These figures are based on work carried out by Warrington Fire Research Centre (now Bodycote) in the UK and European research projects into the stress and strains of steel members under simulated fire conditions.

The stress reduction ratio factors mentioned below are based on BS5950: Part 1: 1990. Similar figures can be applied from AS4600.

The method to calculate whether the diameter of the threaded rod is within the permitted stress level is given below.

<table>
<thead>
<tr>
<th>Fire resistance period</th>
<th>Approximate temperature</th>
<th>Maximum permitted stress</th>
<th>Maximum permitted centres</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 minutes</td>
<td>840°C</td>
<td>18/mm²</td>
<td>2500mm</td>
</tr>
<tr>
<td>60 minutes</td>
<td>950°C</td>
<td>10/mm²</td>
<td>2500mm</td>
</tr>
<tr>
<td>90 minutes</td>
<td>1000°C</td>
<td>10/mm²</td>
<td>2500mm</td>
</tr>
<tr>
<td>120 minutes</td>
<td>1050°C</td>
<td>10/mm²</td>
<td>2500mm</td>
</tr>
<tr>
<td>180 minutes</td>
<td>1110°C</td>
<td>6/mm²</td>
<td>2000mm</td>
</tr>
<tr>
<td>240 minutes</td>
<td>1150°C</td>
<td>6/mm²</td>
<td>1500mm</td>
</tr>
</tbody>
</table>

It should be noted that the stress levels referred to above apply to the threaded rod hanger supports themselves. The horizontal members have a differing level of applicable stress (see page 5). The maximum centres refers to the greatest allowable distance between hanger support systems. However it should be noted that in certain locations, bends for instance, additional supports at lesser centres should be considered.

Where the hanger support system may exceed the limits given in the table above the remedial options are as follows:
1) Increase the dimensions of the hanger support system, e.g. rod diameters etc,
2) Reduce the centres of the hanger support system,
3) Protect the hanger rods.

Hangers supporting steel ducts protected with Promat materials can be left unprotected providing the maximum stress on each hanger does not exceed the values given in the above table and importantly that their length does not exceed 2000mm. Where hanger rods exceed this dimension, there is a high risk of stability failure of the duct due to excessive expansion of the support system. If hanger rods exceed 2000mm, they should be protected at all times for all systems, regardless of system type or manufacturer.
Stress Calculation For Hangers

To calculate the stress in N/mm² on each hanger, the total weight of the ductwork and fire protection materials being taken by each hanger should be calculated in kilograms, converted to Newtons (N) by multiplying by 9.81 and then divided by the cross-sectional area of the hanger in mm². The cross-sectional area of a circular hanger is \(\pi r^2 \) where r is the radius of the support rod. It should be noted that the root diameter of the threaded rod should be applied in this calculation, not the outer diameter of the thread. Please refer to the table below for details.

The method to calculate whether the diameter of the threaded rod is within the permitted stress level is given below.

<table>
<thead>
<tr>
<th>Nominal outer diameter</th>
<th>Root diameter</th>
<th>Cross sectional area</th>
</tr>
</thead>
<tbody>
<tr>
<td>6mm</td>
<td>5.06mm</td>
<td>20.10mm²</td>
</tr>
<tr>
<td>8mm</td>
<td>6.83mm</td>
<td>36.63mm²</td>
</tr>
<tr>
<td>10mm</td>
<td>8.60mm</td>
<td>58.08mm²</td>
</tr>
<tr>
<td>12mm</td>
<td>10.36mm</td>
<td>84.29mm²</td>
</tr>
<tr>
<td>14mm</td>
<td>12.25mm</td>
<td>117.85mm²</td>
</tr>
<tr>
<td>16mm</td>
<td>14.14mm</td>
<td>157.03mm²</td>
</tr>
<tr>
<td>18mm</td>
<td>15.90mm</td>
<td>198.55mm²</td>
</tr>
<tr>
<td>20mm</td>
<td>17.67mm</td>
<td>245.20mm²</td>
</tr>
</tbody>
</table>

The density of steel is approximately 7850kg/m³, therefore the weight of steel (kg) = 7850 x surface area (m) x steel thickness (m).

The following example of calculating the stress of the support system is based on the use of PROMATECT®-H boards, however, this method would apply to all fire resisting systems.

- Board thickness (mm) = 12
- Duct height (m) = 1.0
- Duct width (m) = 1.0
- Centres of hangers (m) = 1.22
- Area of boards = (Width x 2) + (Height x 2) x Centres of hangers
- Weight of boards = Area x Thickness x Density (975kg/m³)
- Weight of angles = (Centres of hangers x 4) + (Width x 4) + (Height x 4) x 0.63kg/m
- Section weight (kg) = 68.62 (inclusive of angles)
- Total force (N) = 673 (Weight (kg) x 9.81 = N)
- Maximum bending Moment, M = \(\frac{W \times L^2}{8} \) = 101.79
- Stress, S = \(\frac{M}{Z} \) < 19.5
- Section modulus, Z = \(\frac{M}{Z} > 19.5 \)
- Z = \(> 4.7 \text{cm}^3 \)

Using C-channels of uniform thickness in web and flanges, the dimensions of channel:

- Breath of channel (cm) = 3
- Depth of channel (cm) = 5
- Thickness of channel (cm) = 0.4
- Section modulus = \(\frac{B \times D^3 - b \times d^3}{6} \)
 = \(4.9 \text{cm}^3 \)

If these stress levels are exceeded then the size of the hanger members must be increased, or the centres of the hangers reduced or the hangers protected. The penetration of the hanger fixings into any concrete soffit should be a minimum of 40mm for up to 120 minutes ratings or 60mm for more than 120 and up to 240 minutes ratings.

To calculate the stress of the horizontal supporting angle of channel, the following would apply.

Board thickness (mm) = 12
Duct height (m) = 1.0
Duct width (m) = 1.0
Centres of hangers (m) = 1.22
Area of boards = (Width x 2) + (Height x 2) x Centres of hangers
Weight of boards = Area x Thickness x Density (975kg/m³)
Weight of angles = (Centres of hangers x 4) + (Width x 4) + (Height x 4) x 0.63kg/m
Section weight (kg) = 68.62 (inclusive of angles)
Total force (N) = 673 (Weight (kg) x 9.81 = N)
Maximum bending Moment, M = \(\frac{W \times L^2}{8} \) = 101.79
Stress, S = \(\frac{M}{Z} \) < 19.5
where Z is the section modulus in cm³

Section modulus, Z = \(> \frac{M}{19.5} \)
Z = \(> 4.7 \text{cm}^3 \)

Since the stress is less than 10N/mm² as set in the table above, an 8mm diameter rod is the minimum permissible for the duct of cross section 1000mm x 1000mm x 1220mm length constructed with a single layer of 12mm PROMATECT®-H. If cladding a steel duct, the weight of this has to be included within the total weight supported upon the hangers.
<table>
<thead>
<tr>
<th>Duct type</th>
<th>System code</th>
<th>Maximum duct pressure during fire</th>
<th>FRL</th>
<th>Board thickness</th>
<th>Type of stiffeners (see page 234)</th>
<th>Maximum dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>± 500Pa</td>
<td></td>
<td>25mm</td>
<td>–</td>
<td>1200mm x 1200mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.30/</td>
<td></td>
<td>30/30/30</td>
<td>–</td>
<td>–</td>
<td>1200mm x 1200mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.60/</td>
<td></td>
<td>60/60/60</td>
<td>–</td>
<td>–</td>
<td>1200mm x 1200mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.90/</td>
<td></td>
<td>90/90/90</td>
<td>–</td>
<td>–</td>
<td>1200mm x 1200mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.12/</td>
<td></td>
<td>120/120/120</td>
<td>25mm</td>
<td>–</td>
<td>1200mm x 1200mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.24/</td>
<td></td>
<td></td>
<td>40mm</td>
<td>–</td>
<td>1200mm x 1200mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.30/</td>
<td></td>
<td>30/30/30</td>
<td>40mm</td>
<td>–</td>
<td>1200mm x 1200mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.60/</td>
<td></td>
<td>60/60/60</td>
<td>40mm</td>
<td>–</td>
<td>1200mm x 1200mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.90/</td>
<td></td>
<td>90/90/90</td>
<td>40mm</td>
<td>–</td>
<td>1200mm x 1200mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.12/</td>
<td></td>
<td>120/120/120</td>
<td>40mm*</td>
<td>–</td>
<td>1200mm x 1200mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.24/</td>
<td></td>
<td>240/240/240</td>
<td>52mm*</td>
<td>2 rows</td>
<td>120mm x 1200mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.30/</td>
<td>± 750Pa</td>
<td>30/30/30</td>
<td>40mm</td>
<td>–</td>
<td>1200mm x 1200mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.60/</td>
<td></td>
<td>60/60/60</td>
<td>40mm</td>
<td>–</td>
<td>1200mm x 1200mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.90/</td>
<td></td>
<td>90/90/90</td>
<td>40mm</td>
<td>–</td>
<td>1200mm x 1200mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.12/</td>
<td></td>
<td>120/120/120</td>
<td>40mm*</td>
<td>–</td>
<td>1200mm x 1200mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.24/</td>
<td></td>
<td>240/240/240</td>
<td>52mm*</td>
<td>2 rows</td>
<td>120mm x 1200mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.30/</td>
<td>± 1000Pa - 2000Pa</td>
<td>30/30/30</td>
<td>40mm</td>
<td>1 row</td>
<td>1440mm x 700mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.60/</td>
<td></td>
<td>60/60/60</td>
<td>40mm</td>
<td>1 row</td>
<td>1440mm x 700mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.90/</td>
<td></td>
<td>90/90/90</td>
<td>40mm</td>
<td>1 row</td>
<td>1440mm x 700mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.12/</td>
<td></td>
<td>120/120/120</td>
<td>40mm*</td>
<td>1 row</td>
<td>1440mm x 700mm</td>
</tr>
<tr>
<td></td>
<td>PE 43.24/</td>
<td></td>
<td>240/240/240</td>
<td>52mm*</td>
<td>2 rows</td>
<td>1440mm x 700mm</td>
</tr>
</tbody>
</table>

*For performance to AS1530: Part 4, duct constructed 52mm PROMATECT®-L500 boards. For external fire (temperature measured inside duct) FRL 120/120/60. For internal fire FRL 120/120/90. To obtain FRL 120/120/120, use 400mm wide collar, see details of 3 on page 7.
PROMATECT®-L500 self-supporting ducts must be supported at maximum 1250mm centres, located to coincide with joints, or to one side of joint. No protection is required to the support angle or channel unless each hanger is more than 50mm from the duct sides. In this case, the support section should be clad as shown above. Vertical duct runs normally require to be tied back to an adjoining masonry wall using threaded rods and angle or channel support section at maximum 3000mm centres.

For selection of board thickness, it will not only depend on the required fire performance but also on the internal cross section of the duct and the operating pressure(s). With large ducts and medium to high operating pressures, internal stiffeners may be required. See page 8. Please consult Promat if the operating pressure exceeds 1000Pa.

The above construction of self-supporting fire resistant encasements around is up to 10 metres wide in accordance with the criteria of BS476: Part 24 and AS1530: Part 4, exposed to external and internal fire. Please consult Promat Technical Department for duct width over 3m.

For impact resistant systems in accordance with the criteria BS5669: Part 1 exposed to external and internal fire, 52mm thick PROMATECT®-L500 boards are required. Insulation will be as Duct type B (exposed to internal fire).
Maximum duct pressures

The basic construction design is adequate for PROMATECT®-L500 ducts with a maximum internal cross-section of 1200mm x 1200mm for operating pressures up to ± 500Pa.

This limit can be increased to ± 750Pa if the board thickness is 40mm or greater. For larger ducts and greater operating pressures, internal stiffeners of either type shown here are required.

Internal stiffeners

Stiffeners are constructed with strips of minimum 250mm wide PROMATECT®-L500 board and fixed at maximum 600mm centres (Type 1).

Where a duct is subdivided by a solid PROMATECT®-L500 board, stiffeners are required with holes cut within the wall of a size and quantity to ensure equal crossflow of air between the two halves (Type 2).

Types of these stiffeners are specified on page 7 for the applicable FRL’s and maximum duct pressures.

Masonry or concrete wall penetration

The duct should pass through the wall opening without interruption. The penetration is sealed with mineral wool and PROMATECT®-L500 collars are fitted around the duct on both sides on the wall forming an L-shape. See opposite page.

For lightweight framed partition penetration, please consult Promat Technical Department.

Concrete floor slab penetration

Same for the wall penetration, the duct should pass through the floor opening without interruption. The gap is sealed with PROMASTOP® Cement or PROMASEAL® Mortar and PROMATECT®-L500 collars are fitted around the duct on both sides on the floor, forming an L-shape, to transfer the load of the duct to the floor.
1. This document is formulated on the basis of information and experience available at the time of preparation. Promat is constantly reviewing and updating all of its test data and reserves the right to change specifications without notice.

2. Promat is not responsible if recipients of fire test reports, assessments or literature incorrectly interpret their contents and use products based on those interpretations.

For Promat International groups worldwide: www.promat-international.com

Your local Promat supplier

For latest information of the Promat Asia Pacific organisation, please refer to www.promat-ap.com